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ABSTRACT 
Newly developed miniature wireless inertial measurement 

units (IMUs) hold great promise for measuring and analyzing 

multibody system dynamics. This relatively inexpensive 

technology enables non-invasive motion tracking in broad 

applications, including human motion analysis. The second part 

of this two-part paper advances the use of an array of IMUs to 

estimate the joint reactions (forces and moments) in multibody 

systems via inverse dynamic modeling. In particular, this paper 

reports a benchmark experiment on a double-pendulum that 

reveals the accuracy of IMU-informed estimates of joint 

reactions. The estimated reactions are compared to those 

measured by high precision miniature (6 dof) load cells. Results 

from ten trials demonstrate that IMU-informed estimates of the 

three dimensional reaction forces remain within 5.0% RMS of 

the load cell measurements and with correlation coefficients 

greater than 0.95 on average.  Similarly, the IMU-informed 

estimates of the three dimensional reaction moments remain 

within 5.9% RMS of the load cell measurements and with 

correlation coefficients greater than 0.88 on average.  The 

sensitivity of these estimates to mass center location is 

discussed. Looking ahead, this benchmarking study supports the 

promising and broad use of this technology for estimating joint 

reactions in human motion applications. 

 

INTRODUCTION 
The annual number of total hip and knee replacement 

surgeries are predicted to increase by over 170% (to 572,000) 

and 670% (to 3.48 million), respectively by the year 2030 [1].  

This alarming increase in joint replacements motivates the need 

for non-invasive, clinically viable methods to identify 

pathological lower extremity motion before joint injuries occur.  

One of these potential methods, inverse dynamic modeling, 

begins by approximating the human body as a multibody system 

of rigid segments connected by joints.  Knowledge of the 

segmental kinematics, namely the angular velocity and angular 

acceleration of each segment and the linear acceleration of the 

segment’s mass center, enables a solution for the reaction 

kinetics (i.e. forces and moments) acting at the joints provided 

segmental inertial properties (e.g. mass center location, mass, 

inertia tensor) are known [2]. 

The current standard for quantifying segmental kinematics 

is video-based motion capture (MOCAP).  MOCAP is an 

expensive technology that employs an array of high-speed 

cameras calibrated to provide three-dimensional positions of a 

set of reflective markers attached to a subject.  Markers are 

typically attached to a subject’s skin via adhesive tape in 

specific locations to define bony anatomical landmarks [3].  

This method is often constrained to a dedicated motion-capture 

laboratory and requires an operator skilled in the placement of 

the reflective markers as well as the collection and analysis of 

the resulting marker position data.  

As mentioned previously, inverse dynamic modeling 

requires knowledge of the angular velocity and angular 

acceleration of each body segment in addition to the segment’s 

mass center acceleration.  Computation of these quantities from 

marker position data requires a differencing operation to 

compute segment angles and then successive numerical 

differentiations to compute angular velocity and angular 
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acceleration.  Two successive differentiations are also required 

to compute segmental mass center acceleration.  It is well 

established that these numerical differentiations significantly 

amplify small errors in the initial position data (due to 

measurement error, marker occlusion, skin motion, etc.), 

resulting in potentially large errors in the very kinematic 

quantities required for inverse dynamics [4,5]. 

The above limitations (accuracy, cost, and laboratory 

infrastructure) prevent widespread adoption of MOCAP as a 

clinically viable tool for estimating joint reactions.  However, 

these shortcomings may be addressed by advancing an 

alternative technology, namely miniaturized inertial 

measurement units (IMUs). Miniature IMUs, which incorporate 

MEMS accelerometers and angular rate gyros,   measure the 

angular velocity and linear acceleration of any rigid body to 

which they are attached. When deployed as a body worn sensor 

array, miniature IMUs directly provide the angular velocity and 

linear acceleration of body segments needed for inverse 

dynamics and require just a single derivative operation to yield 

the requisite angular acceleration. Thus, miniature IMU arrays 

have the potential to yield far more accurate kinematic data for 

the inverse dynamic estimates of joint reactions than (position-

based) MOCAP. In addition, miniature IMU arrays are a highly 

portable technology that can be deployed in the clinic, 

workplace, or field of play and for a very small fraction of the 

cost of MOCAP. 

Several recent studies explore the use of IMUs for inverse 

dynamic modeling and in (non-laboratory) environments 

previously inaccessible using MOCAP [6–9].  One study 

employs IMUs as part of the inverse dynamic analysis of the 

human knee joint for patients with knee osteoarthritis [6].  

Estimates of the knee adduction moment during ambulatory gait 

are obtained using kinematic data from a shank-mounted IMU 

with ground reactions measured from a wearable, instrumented 

shoe.  Moreover, this study benchmarks the adduction moment 

estimated using the portable technology (IMU plus 

instrumented shoe) with that estimated using a laboratory-based 

optoelectronic marker system and a floor-mounted force plate.  

While it is important to benchmark the accuracy of the joint 

reactions estimated using data from inertial sensors, the  study 

[6] employs a gold standard (optoelectronic cameras) which 

inherits the inaccuracies of  MOCAP in measuring the requisite 

segmental kinematics. 

The objective of this paper is to use a precise gold standard 

to explore the accuracy of joint reactions estimated using 

miniature IMU arrays. To this end, we conduct a careful 

benchmarking study where the reaction forces and moments 

acting at the joints of a well characterized mechanical system 

are directly measured from embedded six degree-of-freedom 

force and torque sensors. The mechanical system, an 

instrumented double-pendulum introduced in the companion 

paper [10], incorporates a two-node array of miniature wireless 

IMUs that provide the kinematic data for inverse dynamic 

estimates of the joint reactions.  We open with a brief 

description of the double pendulum from [10] and the 

additional instrumentation needed for this study.   

 

METHODS 
We return to the instrumented double pendulum introduced 

in the companion paper [10] that provides benchmark 

measurements of both kinematic and kinetic data. Recall that 

the benchmark kinematic data is provided by two high 

resolution (0.07 deg.) rotary optical encoders that measure the 

rotations across both joints. The benchmark kinetic data is 

provided by two high resolution load cells embedded in the two 

links immediately adjacent to each joint (red cylinders, Fig. 

1A). In addition, the double pendulum is instrumented with two 

(6 dof) IMUs, one per link (blue rectangles, Fig. 1).  The 

instrumentation is illustrated in the schematic of Fig. 1 and also 

visible in the photograph of Fig. 1 of [10]. A description of the 

load cells is provided below and descriptions of the IMUs and 

encoders are provided in the companion paper [10].  Analysis of 

the data from these instruments requires definition of the frames 

of reference illustrated in Fig. 1 A-C which are further defined 

below 

 

 
Figure 1: Schematic of the instrumented double pendulum with 

definitions of reference frames defined. Refer also to photograph 

shown in Fig. 1 of [10]. 

We define three reference frames to describe the dynamics 

of the double pendulum: frame B is fixed to the bottom link and 
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is composed of the orthogonal unit vectors (
1 2 3

ˆ ˆ ˆ,  ,  
B B B

E E E , Fig. 

1C); frame T is fixed to the top link and is composed of the 

orthogonal unit vectors (
1 2 3

ˆ ˆ ˆ,  ,  
T T T

E E E , Fig. 1B); and frame G is 

an inertial frame composed of the unit vectors (
1 2 3

ˆ ˆ ˆ,  ,  
G G G

E E E , 

Fig. 1A).  The reference frames are defined such that 
1

ˆ T
E , 

1

ˆ B
E , 

and 
1

ˆ G
E  are parallel to the rotation axes of the links, 

3

ˆ B
E  and 

3

ˆ T
E  are aligned with the long axis of their respective links, and 

3

ˆ G
E  is aligned with gravity.  The link-fixed reference frames (B 

and T), are also assumed to be aligned with the principal axes of 

the links.  We must also consider two additional reference 

frames defined by the sense axes of the two attached IMUs.  

The bottom link IMU reports measurements along (
1 1 1

1 2 3
ˆ ˆ ˆ,  ,  e e e , 

Fig. 1C), while the top link IMU reports measurements along 

(
2 2 2

1 2 3
ˆ ˆ ˆ,  ,  e e e , Fig. 1B). In general, the sense axes are not aligned 

with the principal axes of the links. 

The two load cells noted in Fig. 1A are Nano17
TM

 

force/torque sensors which provide three-axis measurement of 

both force and moment.  They resolve forces up to 70 N along 

the length of the pendulum links and 50 N in the two transverse 

directions, and all with a resolution of 0.0125 N. They resolve 

moments up to 500 N-mm about all three axes with a resolution 

of 0.0625 N-mm.  Load cell #1, mounted to the distal end of the 

top link at joint 
1
j , measures reactions at this joint and with 

components resolved in frame T.  Load cell #2, mounted to the 

support at joint 
2

j , measures reactions at this joint and with 

components resolved in frame G.  The reaction forces (
1 2
,  F F ) 

and moments (
1 2
,  M M ) measured by each load cell are shown 

in the free body diagrams of the bottom and top links in Fig. 2A 

and B, respectively.   

Starting from the free body diagrams in Fig. 2, systematic 

use of the Newton-Euler equations for each body yields 

expressions for the reactions.  Specifically, Newton’s second 

law for both links yields the reaction forces  

 
1 1 1c

F m a g   (1) 

 
2 1 2 2c

F F m a g    (2) 

where 
1

m  and 
2

m is the mass of the bottom and top link, 

respectively, 
1c

a  and 
2c

a is the acceleration of the mass center 

of the bottom and top link, respectively, and g  denotes gravity.  

Similarly, Euler’s second law for both links yields the reaction 

moments   

 

 

 

 

 
1 1 1 1 1 1 1/ 1 1c c j c

M I I r F        (3) 

   
2 2 2 2 2 2 2 / 2 2 1 1/ 2 1c c j c j c

M I I r F M r F           (4) 

where  
1c

I  and 
2c

I  is the inertia tensor (principal axes through 

centroid) for the bottom and top links, respectively, 
1/ 1j c

r  is a 

position vector locating 
1
j  relative to the (bottom link) mass 

center 
1

c , 
1/ 2j c

r  and 
2 / 2j c

r  are position vectors locating 
1
j  and 

2
j  relative to the (top link) mass center 

2
c , respectively, and 

1
 , 

1
 , 

2
 , and 

2
  denote  the angular velocity and angular 

acceleration of the bottom and top link, respectively.   

 

 
Figure 2: Free body diagrams for the bottom (A) and top (B) link of 

the double pendulum. 

 

Solving (1)-(4) in sequence yields solutions for the joint 

reactions assuming knowledge (measurement) of all kinematical 

quantities, the link geometry and inertia properties. Table 1 

reports the dimensions, mass, and principal moments of inertia 

for each link.  The link dimensions and mass are measured 

directly, while principal moments of inertia are estimated by 

approximating each link as a rectangular prism of constant 

density with the dimensions and mass noted in the table. 
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Parameter Bottom Top 

Length (m) 0.305 0.356 

Width (m) 0.051 0.051 

Height (m) 0.019 0.019 

Mass (kg) 0.834 0.908 

2

1
 (kg-m )I  0.007 0.010 

2

2
 (kg-m )I  0.007 0.010 

2

3
 (kg-m )I  <0.001 <0.001 

Table 1: Summary of dimensions, mass and principal moments of 

inertia for each link. 

 

The kinematical quantities are measured or estimated from 

IMU data for the freely decaying pendular motion described in 

[10]. The IMU provides direct measurement of link angular 

velocity (
1 2
,    ) and thus link angular acceleration (

1 2
,    ) 

following numerical differentiation.  The IMU also measures 

the acceleration at the center of the accelerometer polluted by 

gravity
 1

.  Conveniently, gravitational pollution in the measured 

acceleration is canceled by the weight forces appearing in (1) 

and (2).  However, solution of (2) and (4), and direct 

comparison of the calculated reactions to load cell 

measurements requires knowledge of the orientation of each 

link relative to frame G. 

The orientation of each link is found from the orientation of 

the attached IMU and in two steps. The first step establishes the 

initial orientation of the IMU sense axes when the pendulum is 

in equilibrium. The second step determines the change in 

orientation upon integrating the link angular velocity during the 

subsequent oscillations.   

During the first step, the pendulum hangs at rest. The 

accelerometers measure solely the acceleration due to gravity 

thus establishing the initial direction of 
3

ˆ G
E  in each IMU frame 

of reference.  Next, the pendulum is displaced from equilibrium, 

released and oscillates freely with decaying amplitude. The 

angular velocity measured by the angular rate gyros establishes 

the orientation of the axis of rotation 
1

ˆ G
E  which remains fixed 

relative to the IMU frames. The average direction of the angular 

velocity is used to deduce the direction of 
1

ˆ G
E with respect to 

both IMU frames. Finally, the initial orientation of
2

ˆ G
E  resolved 

in the IMU frames follows from 
2 3 1

ˆ ˆ ˆG G G
E E E  .  The initial 

direction cosine matrices, R , that define the orientation of the 

IMU frames, (
1 1 1

1 2 3
ˆ ˆ ˆ,  ,  e e e ) and (

2 2 2

1 2 3
ˆ ˆ ˆ,  ,  e e e ), relative to frame G 

                                                           
1 The MEMS accelerometers measure acceleration down to zero Hertz 

and therefore measure gravity in addition to the superimposed acceleration due 

to movement. 

(
1 2 3

ˆ ˆ ˆ,  ,  
G G G

E E E ) follow immediately from the components of 

1 2

ˆ ˆ,  
G G

E E and 
3

ˆ G
E  established by this procedure. The components 

of each direction cosine matrix also establishes the initial values 

of the Euler parameters 1 2 3 4( , , , )     per 

   

   

   

2 2 2 2

1 2 3 4 1 2 3 4 1 3 2 4

2 2 2 2

1 2 3 4 2 1 3 4 2 3 1 4

2 2 2 2

1 3 2 4 2 3 1 4 3 1 2 4

2 2

2 2

2 2

,  ,  

,  ,  

,  ,  

e e

R e e

         

         

           

    

     

    

 
 
 
  

 (5) 

for subsequent use in the second step.   

During the second step, the evolution of the Euler 

parameters from the initial condition above is governed by the 

differential equation 

3 2 11 1

3 1 22 2

2 1 33 3

1 2 34 4

0 ( ) ( ) ( )

( ) 0 ( ) ( )1

( ) ( ) 0 ( )2

( ) ( ) ( ) 0

t t t

t t t

t t t

t t t

   

   

   

   








  

    
    
    
    
    

    

 
(

(6) 

where
1

 , 
2

 , and 
3

  are the three components of the 

measured angular velocity.  This ordinary differential equation 

is integrated forward in time using standard numerical 

integration techniques subject to the Euler parameter 

normalization constraint 
2 2 2 2

1 2 3 4
1        at each time 

step.  Doing so provides the Euler parameters as functions of 

time during the subsequent oscillations of the pendulum and 

therefore the orientation of the top and bottom links. 

Small errors in rate gyro calibration and sensitivity to 

temperature subject the Euler parameters to an accumulation of 

error over time known as drift [11,12].  One can correct for drift 

by fusing accelerometer and rate gyro derived estimates of 

orientation via a Kalman or complementary filter [11,12].  In 

this study, we instead exploit the constraint that the pendulum 

oscillates about its equilibrium position to correct for drift.  In 

particular, the Euler parameters must also oscillate about their 

initial (equilibrium) values.    

 The direction cosine matrix  
1

R t  defines the orientation, 

at every instant in time, of the bottom link IMU measurement 

frame to the G frame according to 

 
1

1 1 1

1 2 3
ˆ ˆ ˆ, ,G e e e

v R t v  (7) 

where 
G

v  is a generic vector resolved in the G frame and 

1 1 1

1 2 3
ˆ ˆ ˆ, ,e e e

v  is the same generic vector resolved in the bottom link 

IMU measurement frame.  An analogous direction cosine 

matrix,  
2

R t , is developed for the top link.  Note that  
1

0R  

and  
2

0R  also define the constant orientation of  the bottom 

link IMU measurement frame to frame B and the top link IMU 

measurement frame to frame T, respectively.   
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Having defined the orientations of each IMU relative to 

gravity, we then use IMU data to define the mass center 

acceleration of each link, polluted by gravity, according to  

 
1 1 1 1/ 1 1 1 1/ 1c m c a c a

a a r r         (8a) 

 
2 2 2 2 / 2 2 2 2 / 2c m c a c a

a a r r         (8b) 

where 
1m

a  and 
2m

a is the acceleration measured by the bottom 

and top link accelerometers, respectively, and 
1/ 1c a

r  and 
2 / 2c a

r  

are position vectors locating the mass center of the bottom and 

top links relative to their respective accelerometers.  These 

position vectors are unknown and, in practice, difficult to 

determine.  However, these unknown position vectors can be 

written as the sum of two vectors that are easier to determine.  

For the bottom link, consider that  

1/ 1 1/ 1 1/ 1c a j a c j
r r r   (9) 

where 
1/ 1j a

r  is the position of 
1
j  relative to the accelerometer, 

and 
1/ 1c j

r  is the position of the link mass center relative to the 

joint.  In human subject studies, 
1/ 1c j

r  is often estimated from 

anthropometric data (or an alternative approach [13]) and 
1/ 1j a

r  

is estimated based on methods like those presented in [14].  In 

this study, a coordinate measuring machine (MicroScribe G2x, 

positional accuracy/resolution of 0.23/0.13 mm) is used to 

measure 
1/ 1j a

r , and 
1/ 1c j

r  is initially approximated as locating the 

geometric center of the link. 

Finally, to compare the joint reactions estimated from (1)-

(4) to the load cell-measured values, we first need to resolve 

both in a common frame of reference.  Details of this procedure 

are presented in Annex A.   

 

RESULTS AND DISCUSSION 
The experiment and methods described above provide 

IMU-based estimates of joint reactions for direct comparison 

with those measured by embedded load cells.  This section 

presents a series of results that benchmark the accuracy of the 

IMU-based estimates.  We open by reviewing IMU data for an 

example trial.  We demonstrate the accuracy of the calculated 

link orientation through comparisons with the link angles 

measure by the optical encoders.  We then present the IMU-

estimated joint reactions, based on the initial assumption that 

the link mass centers coincide with their geometric centers. We 

then relax that assumption in arriving at superior estimates of 

the joint reactions.   

Figure 3 illustrates the IMU data for the bottom link during 

a free oscillation test as described in [10].  Three components of 

acceleration (Fig. 3A) and angular velocity (Fig. 3B) are plotted 

as functions of time, where the blue, green, and red curves 

correspond to data resolved along the 
1

1̂
e , 

1

2
ê , and 

1

3
ê  sense axes, 

respectively. 

 

 
Figure 3:  IMU acceleration (A) and angular velocity (B) history for 

an example trial sampled from the bottom link IMU.  The pendulum 

begins at rest in its stable equilibrium position (t < t1), is perturbed 

from this position by hand (t1 < t < t2) and then released (t = t3). 

 

The behavior of the pendulum during this trial is 

immediately discernible in Fig. 3. Specifically, the pendulum 

remains at rest in its stable equilibrium position (t < t1), is 

perturbed from this position by hand and held stationary (t2 < t 

< t3), and released (t = t3) and allowed to oscillate freely about 

equilibrium (t > t3).  Note that the accelerometer measures the 

acceleration due to gravity at the start of the trial while the 

pendulum is at rest.  As described above, we exploit this fact to 

determine the initial orientation of the IMU frames prior to 

subsequent integration of (6).  This integration provides the 

(drift-polluted) estimate of the orientation of each link 

throughout the remainder of the trial.  Figure 4 illustrates the 

uncorrected (drift-polluted) estimates of the four Euler 

parameters for the bottom link (gray curves) as well as their 

drift corrected values (colored curves) from the start of the 

example trial until 10 seconds after t3. 

 

 
Figure 4: Drift polluted (gray) and corrected (colored) Euler 

parameters defining the orientation of the bottom link up until 10 

seconds after t3 during the example trial. 

 

While the difference between the corrected and drift 

polluted Euler parameters during the first 10 seconds of 

oscillation is quite modest, the drift correction ensures that each 

Euler parameter oscillates about its initial value as required by 

the periodic motion of the pendulum.  We confirm the accuracy 

of the corrected Euler parameters by using them to construct the 

angle formed by the major axis of each link (
3

ˆ B
E  and 

3

ˆ T
E ) and 

gravity (
3

ˆ G
E ).  As described in [10], these angles are also 

measured by the optical encoders which provide the truth data 

for comparison with the IMU-based estimates.  The mean and 
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standard deviation of the root mean squared error (RMSE) and 

the correlation coefficient (r) between the encoder-measured 

and IMU-calculated angles for all ten trials are reported in 

Table 2.  A similar analysis, assuming planar motion, is 

presented in [10].  The results confirm that link orientation 

based on integrating IMU data remains an excellent estimate of 

the true orientation as directly measured by the encoders 

(RMSE   1.6 deg. and r   0.998). 

 

 Bottom
 

Top
 

Parameter RMSE (deg) r RMSE (deg) r 

Mean (SD)  1.54 (0.24) 1.00 (<0.001) 0.87 (0.22) 1.00 (<0.001) 

Table 2: Mean and standard deviation of root mean square error 

(RMSE) and correlation coefficient (r) between IMU-calculated link 

angles and encoder-measured link angles for all ten trials. 

Having established the accuracy of the IMU-derived 

orientation estimates, we evaluate the accuracy of IMU-derived 

estimates of joint reactions. We first present the calculated 

reactions at 
2

j  upon assuming the mass centers of the links are 

collocated with their geometric centers.  For the same trial 

above, the three components of load cell measured force (Fig. 

5A) and moment (Fig. 5B) are shown as dashed curves while 

the IMU derived force and moment are shown as the solid 

curves.  The blue, green, and red curves correspond to reactions 

resolved along the
1

ˆ G
E , 

2

ˆ G
E , and 

3

ˆ G
E  directions, respectively.    

 

 

Figure 5: Reaction force (A) and moment (B) at 
2

j as measured by the 

load cells (dashed) and estimated using IMU data (solid).  The three 

colors distinguish components resolved in frame G: blue=
1

ˆ G
E , 

green=
2

ˆ G
E , and red=

3

ˆ G
E . 

 

The agreement in the three components of force is 

outstanding and it is difficult to discern differences between the 

IMU-based estimates (solid curves) and the load cell 

measurements (dashed curves) on this scale.  For example, the 

2

ˆ G
E  component (green curve) of the predicted reaction force 

has the maximum root mean squared error (RMSE) of only 

3.3% relative to the weight of the top link.  By contrast, there 

are discernible differences between the IMU predicted moment 

components and those measured by the load cell.  The 

difference is particularly observable for the moment acting 

about the vertical (
3

ˆ G
E ) axis (see red curve in Fig 5B for 

10 14t  s for example) which has an RMSE of 3.0% relative 

to the restoring moment acting on the top link at the start of the 

trial.   

For further comparison, we normalize the force 

components by the weight of each link and the moment 

components by the initial restoring moment due to the weight of 

each link at the moment of release.  After normalization, the 

non-dimensional force and moment components estimated using 

IMU data are plotted against those measured by the load cell.  

The resulting plots, after subtracting the mean of each 

component, are illustrated in Figure 6.  The blue, green and red 

curves again distinguish components along the
1

ˆ G
E , 

2

ˆ G
E , and 

3

ˆ G
E  directions, respectively.  

 

 
Figure 6: Three components of normalized force (A) and moment (B) 

acting at 
2

j  as predicted by IMU-enabled inverse dynamic modeling 

plotted against those measured directly by the load cell.  The three 

colors distinguish components resolved in frame G: blue=
1

ˆ G
E , 

green=
2

ˆ G
E , and red=

3

ˆ G
E . 

Figures 6A and 6B illustrate the resulting force and 

moment comparison, respectively. For reference, the black line 

has zero intercept and unit slope.  These results reinforce the 

excellent agreement between the estimated and measured 

reaction force components, each of which have correlation 

coefficient exceeding 0.90.  As suggested in Fig. 5B, however, 

there is less agreement between the estimated and measured 

reaction moment components.  In particular, the correlation 

coefficient is as small as 0.21 for one moment component (
3

ˆ G
E  

direction) for this trial.  Table 3 summarizes the results for all 

ten trials by reporting the mean (standard deviation) of the 

correlation coefficient (r) and the root mean square error 

(RMSE) as a percentage of normalizing factor between the 

estimated and measured reactions at both joint 
1
j  and joint 

2
j .  
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Joint 
1
j  

 
1

F  
1

M    

Direction 
1

ˆ T

E  
2

ˆ T

E  
3

ˆ T

E  
1

ˆ T

E  
2

ˆ T

E  
3

ˆ T

E  

% RMSE  0.51 (0.09) 1.92 (0.39) 0.60 (0.16) 1.12 (0.19) 0.81 (0.19) 0.17 (0.02) 

r 0.96 (0.03) 0.99 (0.01) 1.00 (<0.01) 0.96 (0.01) 0.98 (0.01) 0.87 (0.07) 

Joint 
2

j  

 
2

F  
2

M  

Direction 
1

ˆ G

E  
2

ˆ G

E  
3

ˆ G

E  
1

ˆ G

E  
2

ˆ G

E  
3

ˆ G

E  

% RMSE 0.76 (0.13) 4.61 (0.84) 1.16 (0.37) 6.38 (1.37) 3.61 (0.74) 3.19 (0.14) 

r 0.95 (0.03) 1.00 (<0.01) 1.00 (<0.01) 0.88 (0.04) 0.97 (0.02) 0.58 (0.25) 

Table 3: Mean (standard deviation) of RMS difference (RMSE) and 

correlation coefficient (r) for IMU-derived force and moment 

components compared to those measured by the load cells at 
1
j  and 

2
j .  Results are for the 10 trials based on assuming the mass centers 

are at the geometric centers of the links.  

 

The results in Table 3 demonstrate that IMU-based 

estimates of the force components remain within 4.7% RMS of 

measured values (relative to the weight of each link) and have 

correlation coefficients greater than 0.95 on average.  In 

contrast, the estimated moment components remain within 6.4% 

RMS of  measured values (as compared to the initial restoring 

moment acting on each link) and have correlation coefficients 

greater than 0.58. Possible error sources include small errors in 

the physical properties of each link (mass, mass center, moment 

of inertia, etc.), small misalignment errors between the 

measured and IMU-derived force and moment components, and 

small IMU calibration errors.   

Principal among these errors sources is the known 

sensitivity to small errors in mass center position [3,15].  To 

investigate this, the mass center position of each link is now 

experimentally estimated. We begin with the procedure in [10] 

which assumes that the mass center of a link lies along the 

major axis. The location along that axis is then estimated from 

measurements of the natural frequencies of the decoupled and 

coupled links; refer to estimates of 1l  and 2l  in [10].    In 

addition, we also experimentally measure potential “transverse” 

components of the mass center along the minor and 

intermediate principal axes. The two transverse components are 

estimated from (1) and (2) by employing force measurement 

from the load cells and kinematic measurements from the 

optical encoders. To this end, we rewrite (1) and (2) in terms of 

the absolute link angular velocities and accelerations 

(
1 2 1 2
,  ,  ,      ) determined from successive differentiations 

of the encoder data, arriving at  

 

  
1 1 2 1/ 2 2 2 1/ 2 1 1/ 1

1 1 1/ 1

j j j j c j

c j

F m r r r

r g

   

 

       

  
 (10) 

  2 1 2 2 2 / 2 2 2 2 / 2c j c j
F F m r r g          (11) 

Here, 
1

F  and 
2

F  are the reaction forces measured by the load 

cells,  
1/ 2j j

r  is the location of 
1
j  relative to 

2
j  as measured 

using the coordinate measuring machine, and 
1/ 1c j

r  and 
2 / 2c j

r  are 

the two unknown center of mass locations Equations (10) and 

(11) are formed at each time step during an example trial and 

1/ 1c j
r  and 

2 / 2c j
r  are found using standard least squares.  From 

this analysis, the new mass center locations are 

 
1/ 1

0.001,  0.0027,  0.1522
c j
r     (12) 

 
2 / 2

0.0233,  0.0111,  0.1891
c j
r      (13) 

This updated estimate of mass center locations represents a 

0.9% and 7.9% change from the previously assumed geometric 

centers of the bottom and top link, respectively, relative to the 

length of each link.   

This seemingly small update, however, produces a 

significant change in the reaction moment predicted via inverse 

dynamic modeling as evidenced by the results of Fig.7.  Figure 

7 illustrates the predicted and measured force and moment 

components at 
1
j  (Fig. 7A/B) and 

2
j  (Fig. 7C/D) for the same 

trial considered above. 

 

 

Figure 7: Force (A) and moment (B) components at 
1
j  and force (C) 

and moment (D) components at 
2

j
 
using updated mass center 

positions.  Solid curves correspond to IMU-predicted reactions while 

dashed curves correspond to load cell measurements. The three colors 

distinguish components resolved in frame G: blue=
1 1

ˆ ˆ,T G
E E , 

green=
2 2

ˆ ˆ,T G
E E , and red=

3 3

ˆ ˆ,T G
E E . 

 

The three components of load cell measured force (Fig. 

7A/C) and moment (Fig. 7B/D) are shown as dashed curves 
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while the IMU-derived force and moment components are 

shown as solid curves.  The reactions at 
1
j  are presented in Fig. 

7A/B, where the blue, green, and red curves correspond to 

reactions resolved along the
1

ˆ T
E , 

2

ˆ T
E , and 

3

ˆ T
E  directions, 

respectively.  The reactions at 
2

j   presented in Fig. 7C/D can be 

compared directly to the results presented in Figure 5.  

Qualitatively, the agreement between estimated and measured 

reaction force components remains excellent while agreement 

between the estimated and measured moment components is 

considerably improved. In particular, the maximum RMSE 

among all three estimated force components at 
2

j  decreases to 

2.1% for this trial.  Similarly, the RMS error in the 
3

ˆ T
E  

component of the reaction moment decreases to 1.4% (red 

curve, 3.0% initially).   

 

 
 

Figure 8: Normalized force (A) and moment (B) components at 
1
j and 

normalized force (C) and moment (D) at 
2

j
 
using updated mass center 

positions. Estimated values are plotted versus measured values. 

 

A systematic comparison is provided in Fig. 8 which shows 

normalized predicted force and moment components plotted 

against their measured values (again subtracting the mean from 

each component).  The three components of normalized 

predicted force (Fig. 8A/C) and moment (Fig. 8B/D) are plotted 

against those measured by the load cell at 
1
j  (Fig. 8A/B) and 

2
j  (Fig. 8C/D).  Comparison of the results in Fig. 8B and D 

with Fig. 6 B and D reveals a qualitative improvement in 

agreement between moment components. Specifically, the 

minimum correlation between the predicted and measured 

components of reaction moment at 
2

j  increases from 0.22 to 

0.75.  In contrast, the minimum correlation between the 

predicted and measured reaction force components at 
2

j  

remains essentially unchanged.  Table 4 summarizes the results 

of all ten trials including the mean (SD) RMS error and 

correlation coefficient.  

 

Joint 
1
j  

   
1

F  
1

M    

 Direction 
1

ˆ T

E  
2

ˆ T

E  
3

ˆ T

E  
1

ˆ T

E  
2

ˆ T

E  
3

ˆ T

E  

% RMSE 0.51 (0.09) 1.92 (0.40) 0.61 (0.19) 1.18 (0.21) 0.81 (0.19) 0.19 (0.03) 

r 0.96 (0.03) 0.99 (0.01) 1.00 (<0.01) 0.95 (0.02) 0.98 (0.01) 0.84 (0.07) 

Joint 
2

j  

 
2

F  
2

M  

 Direction 
1

ˆ G

E  
2

ˆ G

E  
3

ˆ G

E  
1

ˆ G

E  
2

ˆ G

E  
3

ˆ G

E  

% RMSE 0.77 (0.14) 4.99 (0.85) 1.23 (0.37) 5.83 (1.22) 3.25 (0.69) 0.99 (0.21) 

r 0.95 (0.023) 1.00 (<0.01) 1.00 (<0.01) 0.88 (0.04) 0.98 (0.02) 0.97 (0.01) 

Table 4: Mean (standard deviation) of RMS difference (RMSE) and 

correlation coefficient (r) for IMU-derived force and moment 

components compared to those measured by the load cells at    and    

for the 10 trials using the updated mass center location. 

 

As reported in Table 4, the estimated force components 

remain within 5.0% RMS of their measured values (again 

normalized by the weight of each link) and exhibit correlation 

coefficients greater than 0.95 on average.  Moreover, the 

estimated moment components remain within 5.8% RMS of 

their measured values (again normalized by the initial restoring 

moments) and exhibit correlation coefficients greater than 0.84 

on average. Thus, the updated mass center position significantly 

increases the average correlation coefficient from 0.58 (the 

original mass center location) to 0.84. This represents a 

substantial improvement from a seemingly minor change (less 

than 8% of the length of the link) in mass center location, a 

finding consistent with prior human motion studies employing  

MOCAP [3,5,15,16]. In this experiment, however we 

demonstrate this sensitivity as compared to a precise gold 

standard (embedded load cells) and for a well characterized 

(mechanical) multi-body system.  In human motion studies, 

these conditions no longer exist.  Often, mass center location is 

estimated from anthropometric data, which can be inaccurate 

[17], and human body segments have a degree of flexibility that 

manifests in variable locations of both mass center and 

center/axis of rotation [18,19].  The agreement herein between 

the IMU estimated reactions and load cell measured reactions 

represent a limiting case that demonstrates a reasonable upper-

bound accuracy for this technique.   
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CONCLUSION 
This paper summarizes results from a careful  experiment 

that benchmarks the use of IMU arrays for estimating reaction 

forces and moments acting at the joints of a simple multi-body 

system; namely a double pendulum.  These predicted reactions 

are compared to reactions measured directly by precision 

miniature force and torque sensors.  Results for 10 trials 

demonstrate that IMU-enabled inverse dynamic modeling  

estimates all components of reaction forces to within 5.0% 

RMS of their measured values (relative to the weight of each 

link) and with correlation coefficients greater than 0.95 on 

average.  Similarly, the estimated components of the reaction 

moments remain within 5.9% RMS of their measured values 

(relative to the restoring moment due to the weight of each link) 

and with correlation coefficients greater than 0.84 on average.  

We highlight the sensitivity of the predicted moments to errors 

in mass center location. In particular, accurate estimates of 

reaction moments require very accurate estimates of mass 

center location (on the order of 8% or less of the length of the 

links in this experiment). These limitations aside, the results of 

this paper also point to the future use of wireless IMU arrays for 

estimating the reactions at the major skeletal joints of the 

human body in supporting injury prevention and rehabilitation, 

athlete and soldier performance, among numerous other 

possible uses. 
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ANNEX A 

INVERSE DYNAMICS EQUATIONS 
 

 

In this annex we present the equations used to calculate the 

reaction force and moment acting at each joint of the double 

pendulum from IMU data for comparison to load cell 

measurements.  The reactions at
1
j , resolved in frame T, are 

defined as         

  

  

1 1 2 1 1 1 1 1/ 1 1 1

1 1/ 1

0

0

T

T

T

m c a

T

c a

F m R R a R r

R r

       



 (14) 

       

    
1 2 1 1 1 1 1 1 1

1 1 1 1/ 1 1 2 1

0 0 0

0

T

T

T

c

T

c j c T

M R R R I R R

I R r R R F

 



  

  
 

(15) 

where 
T

 refers to a vector resolved in frame T,  
1

0R  is the 

(constant) direction cosine matrix defining the orientation of the 

bottom link IMU measurement frame relative to frame B, and 

the other variables are as defined in the body of the paper.  The 

reaction force and moment at 
2

j , resolved in frame G, are 

defined as 

   
  

2 2 2 1 2 2 2 2 2 / 2

2 2 2 2 / 2

0 0

0

G

T T

m c aT

T

c a

F R R F m a R r

R r



 

    

 





 (16) 

     


2 2 2 2 2 2 2 2 2 2

2 / 2 2 1 1/ 2 1

0 0 0
G c c

j c j cT T T

M R I R R I R

r F M r F

     

     
(17) 

where 
G
 refers to a vector resolved in frame G,  

2
0R  is the 

direction cosine matrix that defines the orientation of the top 

link IMU measurement frame relative to frame T, and the other 

variables are as defined in the body of the paper.  The reaction 

force and moment defined in (14)-(17) are compared directly to 

the measured force and moment at each joint in the Results and 

Discussion section included above. 

 


